树状数组 bit.h

1
2
3
4
5
6
7
8
//自定义类型需重载 + - 运算符
template <typename T, int maxn>
class binary_indexed_tree {
T c[maxn + 10]; public:
void add(int p, T v) { p++; for (; p <= maxn; p += p & -p) c[p] += v; }
T query(int p) { p++; T v = 0; for (; p; p -= p & -p) v += c[p]; return v; }
T range(int l, int r) { return query(r) - query(l - 1); }
};

可删堆 deletable_priority_queue.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
//自定义类型要求同 priority_queue 相同。
template <typename T>
class deletable_priority_queue {
priority_queue<T> _main, _del;
int siz;
void clear() {
while (_main.size() && _del.size() && (_main.top() == _del.top())) _main.pop(), _del.pop();
}
public:
void push(T x) { _main.push(x), siz++; }
void del(T x) { _del.push(x), siz--; }
void pop() { _del.push(_main.top()), siz--; }
bool empty() { return siz == 0; }
int size() { return siz; }
T top() { clear(); return _main.top(); }
};

自取模数 module.h

重载了 + - * / ^ inv 运算符,支持 cout 输出。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
template <typename T, T mod>
class Num {
public:
T val;
void format() { if (val < 0) { val += ((-val) / (mod) + 1) * mod; } val %= mod; }
Num(T x) { val = x; format(); }
Num() { val = 0; }
void operator = (T x) { val = x; format(); }
void operator = (Num x) { val = x.val; }
friend Num operator * (Num a, Num b) { return (a.val * b.val) % mod; }
friend Num operator + (Num a, Num b) { return (a.val + b.val) % mod; }
friend Num operator - (Num a, Num b) { return (a.val - b.val + mod) % mod; }
void operator *= (Num n) { val = ((*this) * n).val; }
void operator += (Num n) { val = ((*this) + n).val; }
void operator -= (Num n) { val = ((*this) - n).val; }
Num operator ^ (T b) {
if (b < 0) { b += ((-b) / (mod-1) + 1) * (mod-1); } b %= (mod-1);
Num res(1), a(val);
while (b) { if (b & 1) { res *= a; } b >>= 1, a *= a; }
return res;
}
void operator ^= (T b) { val = ((*this) ^ b).val; }
friend Num operator / (Num a, Num b) { return (Num){a * (b ^ -1)}; }
void operator /= (Num n) { val = ((*this) * (n ^ -1)).val; }
Num inv() { return (*this) ^ -1; }
typedef basic_ostream<char>& type;
friend type operator << (type &out, Num x) { cout << x.val; return out; }
};

复数 complex.h

重载了 + - * 运算符,支持 cout 输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
template <typename T>
class Complex {
T a, b;
public:
Complex(T new_a = 0., T new_b = 0.): a(new_a), b(new_b) {}
Complex(const Complex<T> &cur): a(cur.a), b(cur.b) {}
friend Complex<T> operator - (Complex<T> z1, Complex<T> z2) {
return Complex(z1.a - z2.a, z1.b - z2.b);
}
friend Complex<T> operator + (Complex<T> z1, Complex<T> z2) {
return Complex(z1.a + z2.a, z1.b + z2.b);
}
friend Complex<T> operator * (Complex<T> z1, Complex<T> z2) {
return Complex(z1.a * z2.a - z1.b * z2.b, z1.b * z2.a + z1.a * z2.b);
}
T real() { return a; }
T imag() { return b; }
void real(T cur) { a = cur; }
void imag(T cur) { b = cur; }
void print() { cout << a << " + " << b << "i"; }
typedef basic_ostream<char>& type;
friend type operator << (type &out, Complex<T> z) { z.print(); return out; }
};

主席树 hjt.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class remainable_segment_tree {
struct Node {
size_t siz;
Node *ls, *rs;
int id;
void update() { siz = ls->siz + rs->siz; }
Node(size_t s, Node *ls, Node *rs, int id): siz(s), ls(ls), rs(rs), id(id) {}
} *null;
vector <Node*> root;
int minv, maxv, p, tot_id;
size_t v, rk;
#define mid ((l + r) >> 1)
Node* refresh(Node *pre, int l, int r) {
Node *cur = new Node(pre->siz + v, pre->ls, pre->rs, ++tot_id);
if (l < r) {
if (p <= mid) cur->ls = refresh(pre->ls, l, mid);
else cur->rs = refresh(pre->rs, mid + 1, r);
}
return cur;
}
int query(Node *pre, Node *cur, int l, int r) {
if (l == r) { return l; }
size_t siz = cur->ls->siz - pre->ls->siz;
if (siz >= rk) { return query(pre->ls, cur->ls, l, mid); }
else { rk -= siz; return query(pre->rs, cur->rs, mid + 1, r); }
}
#undef mid
public:
remainable_segment_tree() {
null = new Node(0, 0, 0, 0);
null->ls = null->rs = null, null->siz = 0;
root.push_back(null);
minv = maxv = tot_id = 0;
}
int getpos(size_t pre, size_t cur, size_t rank) {
rk = rank;
return query(root[pre], root[cur], minv, maxv);
}
void insert(size_t pre, size_t cur, int pos, size_t val) { // create a new version
if (cur == root.size()) root.push_back(null);
v = val, p = pos;
root[cur] = refresh(root[pre], minv, maxv);
}
void set_limit(int l, int r) { // remember to set it !!!!!!
if (root.size() <= 1) minv = l, maxv = r;
}
void move(size_t dest, size_t source) {
root[dest] = root[source];
}
} tree;

KD-tree kdt.h

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/* 区间加减修改,单点查询 K-D tree,维护了历史最小值
* usage:
* kdt::kd_tree<2> tree;
* kdt::kd_tree<2>::kd_val x[MAXN];
* for (int i = 1; i <= n; i++) x[i].pos = {%d, %d}, x[i].val = %d;
* tree.init(x + 1, x + n + 1);
*/

namespace kdt {

constexpr int inf = 0x3f3f3f3f;

using array = initializer_list<int>;

template<class T> bool chkmax(T &a, const T b) { return b > a ? (a = b, 1) : 0; }
template<class T> bool chkmin(T &a, const T b) { return b < a ? (a = b, 1) : 0; }

template <const int d_size>
struct kd_tree {

struct kd_pos {
int pos[d_size];
int operator [] (const int x) const { return pos[x]; }
int &operator [] (const int x) { return pos[x]; }
inline bool operator == (const kd_pos &v) const {
for (int i = 0; i < d_size; i++) if (v.pos[i] != pos[i]) return 0;
return 1;
}
inline bool operator <= (const kd_pos &v) const {
for (int i = 0; i < d_size; i++) if (pos[i] > v.pos[i]) return 0;
return 1;
}
kd_pos(array a) { int j = 0; for (auto i : a) { pos[j++] = i; } }
kd_pos(int x) { for (int i = 0; i < d_size; i++) pos[i] = x; }
kd_pos() : kd_pos(0) {}
void print() { debugf("{%lld, %lld}", pos[0], pos[1]); }
};
struct kd_val {
kd_pos pos;
int val;
int &operator [] (const int x) { return pos[x]; }
kd_val() : pos(), val(0) {}
kd_val(array pos, int val) : pos(pos), val(val) {}
};
int tot_id; // for debug
struct kd_node {
int id; // for debug
kd_pos min, max, pos;
int tag, val;
int mintag, minv;
kd_node *ls, *rs;
kd_node() : min(inf), max(-inf), tag(0) {}
} empty, *null;
void info(kd_node* p) {
debugf("node #%lld (%lld, %lld) {\n"
" range (%lld, %lld) ==> (%lld, %lld)\n"
" son: #%lld, #%lld\n"
" minv = %lld, mintag = %lld\n"
" curval = %lld, curtag = %lld\n"
"}\n",
p->id, p->pos[0], p->pos[1],
p->min[0], p->min[1], p->max[0], p->max[1],
p->ls->id, p->rs->id,
p->minv, p->mintag, p->val, p->tag
);
}
inline kd_node* new_node() {
kd_node* cur = new kd_node;
cur->ls = cur->rs = null;
cur->id = ++tot_id;
return cur;
}
inline void add(kd_node *p, int tag, int mintag) {
if (p == null) return;
chkmin(p->minv, p->val + mintag);
chkmin(p->mintag, p->tag + mintag);
p->tag += tag;
p->val += tag;
}
inline void pushup(kd_node *p) {
for (int i = 0; i < d_size; i++) {
chkmin(p->min[i], min(p->ls->min[i], p->rs->min[i]));
chkmax(p->max[i], max(p->ls->max[i], p->rs->max[i]));
}
}
inline void pushdown(kd_node *p) {
add(p->ls, p->tag, p->mintag), add(p->rs, p->tag, p->mintag);
p->mintag = p->tag = 0;
}
kd_node* build(kd_val a[], int l, int r, int d) {
int mid = (l + r) >> 1;
nth_element(a + l, a + mid, a + r + 1, [d] (kd_val a, kd_val b) {return a[d] < b[d];});
kd_node* cur = new_node();
cur->pos = cur->min = cur->max = a[mid].pos;
cur->val = cur->minv = a[mid].val;
if (l < mid) cur->ls = build(a, l, mid - 1, (d + 1) % d_size);
if (mid < r) cur->rs = build(a, mid + 1, r, (d + 1) % d_size);
pushup(cur);
return cur;
}
void modify(kd_node *p, const kd_pos &min, const kd_pos &max, int v) {
if (((int)(p->min <= max) + (int)(min <= p->max)) != 2) return;
if (min <= p->min && p->max <= max) { add(p, v, v); return; }
pushdown(p);
if (min <= p->pos && p->pos <= max) { p->val += v, chkmin(p->minv, p->val);}
modify(p->ls, min, max, v), modify(p->rs, min, max, v);
}
int query(kd_node *p, const kd_pos &pos, int d = 0) {
if ((p->min <= pos || pos <= p->max) == 0) return 0;
if (p->pos == pos) return p->minv;
pushdown(p);
int res = 0;
if (pos <= p->ls->max && pos[d] <= p->pos[d])
res = query(p->ls, pos, (d + 1) % d_size);
if (res == 0)
res = query(p->rs, pos, (d + 1) % d_size);
return res;
}
void print(kd_node* p, int depth = 0) {
info(p);
if (p->ls != null) print(p->ls);
if (p->rs != null) print(p->rs);
}
kd_node* init(kd_val* st, kd_val* ed) {
return build(st, 0, ed - st - 1, 0);
}
kd_tree() { null = &empty; null->ls = null->rs = null; }
};

}