link


构造一颗中序遍历是序列的Treap,发现可以很容易地求出序列上第 xx 位的值,即为 getval(root, x) ,但是不好求一个数 kk 在序列上的位置。这时我们就可以维护一个值 idx(k)idx(k) ,表示值为 kk 的节点编号,这时只需要设计出一个函数来求节点 uu 的排名了,而这个函数也很容易实现,对于一个节点 uu ,每次将它向树根跳,如果它是右儿子,那么就将它父亲的左子树的值以及父亲的大小计入结果。

1
2
3
4
5
6
7
8
9
10
int getpos(int id) { 
int f, cnt = 0;
while ((f = p[id].f) != 0) {
if (id == p[f].rs) {
cnt += p[p[f].ls].siz + 1;
}
id = f;
}
return cnt;
}

既然要存储一个节点的父亲,那么 pushup 更新的时候也要改一下

1
2
3
4
5
6
void pushup(int u) { 
int ls = p[u].ls, rs = p[u].rs;
if (ls) p[ls].f = u;
if (rs) p[rs].f = u;
p[u].siz = p[ls].siz + p[rs].siz + 1;
}

下面总结一下遇到的坑。

getpos 函数,cnt = 0 初始化是错的,应该赋值为 cnt = p[p[id].ls].siz + 1 ,先加上位置大于 ff 而小于 idid 的数个数和 idid 本身。调了我一个小时,一个一个函数地检查


full code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>

const int MAXN = 8e4 + 10;

struct Node {
int ls, rs, f;
int val;
int siz;
int rnd;
}p[MAXN << 5];

int n, m, tot, root;
int idx[MAXN];

void _fullvis(int u) {
if (p[u].ls) _fullvis(p[u].ls);
printf(" node #%d: val=%d, son=#%d/#%d, f=#%d, siz=%d, rnd=%d\n", u, p[u].val, p[u].ls, p[u].rs, p[u].f, p[u].siz, p[u].rnd);
if (p[u].rs) _fullvis(p[u].rs);
}

void _fulldisplaytree(int u, std::string s) {
printf("full display of tree '%s[%d]' {\n", s.c_str(), u);
_fullvis(u);
puts("}\n");
}

void _middlevis(int u) {
if (p[u].ls) _middlevis(p[u].ls);
printf("%d ", p[u].val);
if (p[u].rs) _middlevis(p[u].rs);
}

void _displaytree(int u, std::string s) {
printf("display of tree '%s[%d]' { ", s.c_str(), u);
_middlevis(u);
printf("}\n");
}

int newnode(int val) {
tot++;
p[tot].val = val;
p[tot].ls = p[tot].rs = 0;
p[tot].siz = 1;
p[tot].rnd = rand();
return tot;
}

void pushup(int u) {
int ls = p[u].ls, rs = p[u].rs;
if (ls) p[ls].f = u;
if (rs) p[rs].f = u;
p[u].siz = p[ls].siz + p[rs].siz + 1;
}

void sizsplit(int rt, int &a, int &b, int rank) {
if (rt == 0) {
a = b = 0;
return;
}
int siz = p[p[rt].ls].siz;
if (siz + 1 <= rank) {
a = rt;
sizsplit(p[rt].rs, p[a].rs, b, rank - siz - 1);
pushup(a);
} else {
b = rt;
sizsplit(p[rt].ls, a, p[b].ls, rank);
pushup(b);
}
}

//void valsplit(int rt, int &a, int &b, int val) {
//if (rt == 0) {
//a = b = 0;
//return;
//}
//if (p[rt].val <= val) {
//a = rt;
//valsplit(p[rt].rs, p[a].rs, b, val);
//pushup(a);
//} else {
//b = rt;
//valsplit(p[rt].ls, a, p[b].ls, val);
//pushup(b);
//}
//}

void merge(int a, int b, int &rt) {
if (a == 0 || b == 0) {
rt = a + b;
return;
}
if (p[a].rnd <= p[b].rnd) {
rt = a;
merge(p[a].rs, b, p[rt].rs);
pushup(rt);
} else {
rt = b;
merge(a, p[b].ls, p[rt].ls);
pushup(rt);
}
}

void insert(int pos, int val) {
int x, y, z;
sizsplit(root, x, y, pos - 1);
int u = newnode(val); idx[val] = u;
merge(x, u, z);
merge(z, y, root);
}

int getval(int rt, int pos) {
int siz = p[p[rt].ls].siz;
//printf("getval of (%d, %d)\n", rt, pos);
//_displaytree(rt, "rt");
//printf("siz=%d\n", siz);
if (siz + 1 < pos) {
return getval(p[rt].rs, pos - siz - 1);
} else if (siz + 1 > pos){
return getval(p[rt].ls, pos);
} else {
return p[rt].val;
}
}

int getpos(int id) {
int f, cnt = p[p[id].ls].siz + 1;
while ((f = p[id].f) != 0) {
if (id == p[f].rs) {
cnt += p[p[f].ls].siz + 1;
//printf("add cnt %d\n", p[p[f].ls].siz + 1);
}
id = f;
}
return cnt;
}

void putup(int val) {
int pos = getpos(idx[val]);
int x, y, a, b;
sizsplit(root, x, y, pos - 1);
//_displaytree(x, "x"); _displaytree(y, "y");
sizsplit(y, a, b, 1);
merge(a, x, y);
merge(y, b, root);
}

void putdown(int val) {
//printf("idx[%d]=%d\n", val, idx[val]);
int pos = getpos(idx[val]);
int x, y, a, b;
//printf("pos[%d]=%d\n", val, pos);
sizsplit(root, x, y, pos - 1);
//_displaytree(x, "x"), _displaytree(y, "y");
sizsplit(y, a, b, 1);
merge(b, a, y);
merge(x, y, root);
}

void move(int val, int to) {
if (to == 0) return;
int pos = getpos(idx[val]), u = idx[val];
int nextval = getval(root, pos + to);
int v = idx[nextval];
p[u].val = nextval;
p[v].val = val;
idx[val] = v;
idx[nextval] = u;
}

int ask(int s) {
//printf("ask(%d): %d-%d\n", s, idx[s], getpos(idx[s]));
return getpos(idx[s]) - 1;
}

int query(int s) {
return getval(root, s);
}

int main() {
scanf("%d%d", &n, &m);
for (int i = 1, p; i <= n; i++) {
scanf("%d", &p);
insert(i, p);
}
char opt[10];
for (int i = 1, s, t; i <= m; i++ ) {
scanf("%s", opt);
//printf("operator #%d(%s)\n", i, opt);
switch (opt[0]) {
case 'T':
scanf("%d", &s);
putup(s);
break;
case 'B':
scanf("%d", &s);
putdown(s);
break;
case 'I':
scanf("%d%d", &s, &t);
move(s, t);
break;
case 'A':
scanf("%d", &s);
printf("%d\n", ask(s));
break;
case 'Q':
scanf("%d", &s);
printf("%d\n", query(s));
break;
}
//_fulldisplaytree(root, "root");
}
return 0;
}